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1. Introduction

A substantial number of problems related to the study of maximally supersymmetric Yang-

Mill theory on R×S3 can be translated into the study of hamiltonian multi-matrix models.

Perhaps the most striking success of this simplification is the successful computation of the

spectrum of anomalous dimensions of the gauge theory by mapping the relevant large N

matrix models to integrable quantum spin chains [1, 2]. The matrix model in question is

nothing but the radial hamiltonian of the gauge theory or the dilatation operator. The

dilatation operator is, in general, a complicated multi-matrix model whose Hamiltonian

can only be computed order by order in perturbation theory. However if one focuses on

protected operators of the gauge theory then the dilatation operator takes on a particularly

simple form: indeed it is nothing but a sum of decoupled matrix harmonic oscillators [3, 7,

8]. Though the radial Hamiltonian (when restricted to the sector of protected operators)

appears to be a non-interacting system, gauge fixing induces non-trivial interactions among

the microscopic degrees of freedom of the Hamiltonian. Gauge fixing is necessary as the

radial Hamiltonian inherits a residual U(N) gauge invariance from the original super Yang-

Mills theory. In the simplest case, when one studies the dynamics of BPS operators built

out of a single complex scalar even the gauge fixed dynamics turns out to be free: indeed the

gauge fixed theory is nothing other than that of a collection of free fermions [4, 9, 3, 7, 8, 10].

However this is not the generic scenario. Investigation of the microscopic dynamics of

operators that involve several SYM fields leads, in general, to interacting but integrable
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particle mechanics that can be understood as generalizations of the celebrated Calogero

models.

In this present work, we study this connection between protected operators in N=4

SYM and Calogero models. The underlying motivation is to develop the quantum many-

body theories that are relevant for the appropriate generalizations of the free fermion

picture of the Hamiltonian description of chiral primaries of the gauge theory formed out

of a single complex scalar. In particular, we shall focus on the sub-sector of gauge theory

formed out of three complex scalar fields and two fermions known as the su(2|3) sector of

N =4 SYM [11]. The operator content of this subsector is

Wα = {Z1, Z2, Z3,Ψ1,Ψ2}. (1.1)

Z1, Z2, Z3 being three complex chiral scalars and Ψ1,Ψ2 being two Fermions. The motiva-

tion behind the choice of the su(2|3) sector is its closure under dilatation as all local gauge

invariant composite operators formed out of these five fields

O =
∏

m

Tr(Wα1
· · ·Wαm) (1.2)

mix only with each other to all orders in perturbation theory [11]. Before elaborating

further on the technical details of the dynamics of the protected operators contained in

the su(2|3) sector, it is worth laying out a summary of the basic results obtained in the

paper. We construct a gauge fixed version of the tree level dilatation operator, which is

nothing but a sum of matrix harmonic oscillators and realize it as a generalization of the

celebrated supersymmetric Calogero model known as the Euler Calogero model. Not all

the excitations of the Euler Calogero model correspond to BPS excitations of the the gauge

theory, however, the manifest supersymmetry of the Euler Calogero model can be utilized

to pick out those excitations which do correspond to the protected gauge theory operators.

This construction has been carried out in section 5 of the paper. The su(2|3) sector also

contains a smaller closed subsector of operator mixing namely the so called su(1|1) sector

containing a scalar and a single Fermionic field. Within this subsector, we have been able

to construct a set of states of the tree level dilatation operator that are protected in the

large N limit, but have small anomalous dimensions at finite values of the rank of the gauge

group. The gauge theory operators corresponding to these states interpolate between the so

called LLM[4] and BMN[5]operators and provide us with a set of non-BPS operators about

which one can make non-perturbative/all loops statements by studying the large N limit of

the corresponding tree level dilatation operator. For these operators, we are able to recast

the gauge fixed large N dilatation operator as the well known rational supersymmetric

Calogero model. The construction of the Calogero model and the use of its integrability to

completely solve for its dynamics, enumerate the degeneracies of the corresponding gauge

theory operators and to study the Yangian symmetry underlying their dynamics has been

done in sections 2, 3 and 4.

To recapitulate the free fermion picture of half BPS states it is worth recalling that one

can pick any one of the complex scalars, say Z1 of the su(2|3) sector of the gauge theory

and one then has the standard result that all the operators formed out of only Z1’s are half
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BPS or chiral primaries of the gauge theory i.e they do not have anomalous dimensions.

The dilatation operator in the half BPS sector of chiral primaries is then the tree level

dilatation operator, or the matrix Harmonic oscillator

Hcp = tr(A1†A1). (1.3)

It is understood that one has mapped the chiral primaries to the states of the dilatation

operator with A1† being the creation operator for the Z1 type of excitations. The matrix

harmonic oscillator simply counts the number of fields sitting inside the state. As suggested

in [3] it is more sensible to think of the above Hamiltonian as a gauged matrix model:

Hcp =
1

2
tr

(

(DtX1)
2 + X2

1

)

: DtX = Ẋ + [G,X] (1.4)

where G is a gauge connection. The gauge invariance is simply inherited from original

gauge theory for which the dilatation operator is the radial Hamiltonian. Fixing the gauge

G = 0 is a projection of the dynamics on to the singlet states, and the Hamiltonian simply

reduces to that of a matrix oscillator. Following standard techniques the gauge choice

reduces the number of degrees of freedom of the gauge theory from N2 to N , and the

gauge invariant microscopic dynamics of the half BPS sector can be reformulated as the

dynamics of the N eigenvalues of the matrix X1. The change of variables form the matrix

elements to the eigenvalues introduces a Jacobian, which can be absorbed in a redefinition

of the wave function which subsequently becomes antisymmetric enabling us to interpret

the eigenvalues xi as fermions. The hamiltonian for the eigenvalues is simply the free one

HCP =
1

2

∑

i

(

− ∂2

∂x2
i

+ x2
i

)

(1.5)

One thus has an interpretation of the gauge invariant degrees of freedom of the scalar half

BPS sector of N=4SYM in terms of N free fermions described by (1.5). The free fermion

picture has proved to be extremely useful in understanding non-perturbative aspects of

the AdS/CFT correspondence. For instance a precise map between half BPS geometries

and the phase space density of free fermions has been proposed by [4] while several large

excitations of the free Fermions have been related to BPS branes and giant gravitons in

the dual string theory [13, 6, 3].

The existence of two equivalent descriptions of the matrix harmonic oscillator has

also been viewed as an example of an exact realization of open/closed duality in N =4

SYM [3]. The description of the states of the matrix model in terms of products of traces

of the matrix creation operators has been viewed as a closed string description of the dual

string theory. An operator such as

(Bn)† = tr((A†)n) (1.6)

can be viewed as a creation operator for a closed string mode of energy n. A typical

matrix model state of energy n can then be described by all the partitions of the number

n into n1 · · ·ni such that n1 ≥ n2 · · · ≥ ni. To each partition one may associate a Young
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Tableaux having columns with n1 · · ·ni boxes. This has been regarded as a realization of

the description of the degeneracy of the dual closed string excitations on [6, 3]. As a matter

of fact a world sheet/string sigma model description of the matrix harmonic oscillator has

also been found recently [12], though the connection of the world sheet description of the

matrix oscillator and string theory on AdS5 × S5 probably requires further study.

On the other hand, the description of the states of the matrix model in terms of eigen-

values: the free Fermion picture has been regarded as a an open string /D brane description

of the half BPS sector of the AdS/CFT correspondence. The classic Bosonization result

that relates the degeneracies of states of a free fermion system in 1+1 dimensions to that of

a chiral Boson, where once again the degeneracies are counted by the number of partitions

of the integer energy levels has been regarded as an open string description of the BPS

spectrum of the dual string theory.

Of special interest in recent investigations has been the description of large excitations

i.e excitations with energies of O(N). These large departures from the Fermi sea, known as

the giant gravitons correspond to operators built out of determinants and sub-determinants

rather than traces [6, 3]. For instance the gauge theory description of the maximal BPS

giant corresponds to the state

εii···iN εj1···jN A1†i1
j1

· · ·A1†iN
jN

|0〉 (1.7)

Such large non-perturbative BPS excitations provide one with a gauge theory de-

scription of BPS branes on the dual string geometry. The free Fermion picture gives a

particularly simple and elegant description of the BPS giants: they simply correspond

to exciting an eigenvalue from the bottom of the Fermi sea to the top. The Fermionic

description sheds light on a host of issues related to the AdS/CFT correspondence. For

instance the vibration frequencies of (BPS) giant gravitons computed by a world-volume

computation [39, 40]can be reproduced in the gauge theory language using by solving the

matrix harmonic oscillator. The matrix oscillator description can also be used to clarify a

host of issues regarding the gauge theory duals of non-perturbative string states. Several

such recent interesting developments have been discussed in [14 – 21].

The class of BPS operators described in the brief review above are all charged under

a U(1) of the SO(6) R symmetry group of the gauge theory. However, it is just as nat-

ural to consider operators that carry several other charges. These would correspond to

protected operators that involve more than a single scalar field inside a trace. Hence, a

natural question that arises out of this line of investigation is how the free fermion picture

changes in a systematic way once BPS excitations involving multiple fields are considered.

For instance, in the particular case of the su(2|3) sector considered here, one could have

operators such as

tr(Zn
1 Φ) (1.8)

where Φ can be any one of Z2, Z3,Ψ1,Ψ2. These operators, being the supersymmetry

descendants of trZn
1 are also protected. Maximal giant gravitons such as

εi1···iN εj1···jN (A†1)i1j1 · · · (A
†1)

iN−1

jN−1
(A†α)iNjN

|0〉 (1.9)
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where A†α corresponds to an impurity excitation also fall into the same category of pro-

tected operators. Similarly, one could build protected operators with multiple ’impurity ’

fields inside a single trace. A particularly simple example would be

tr(Z1ΦΦ). (1.10)

The principal question that we shall address in this paper is what the appropriate gener-

alization of the free Fermion picture is when generic protected operators that involve an

arbitrary number of fields are considered. This question is also relevant from the point of

view of understanding the role of supersymmetry in the description of BPS dynamics as

many-body theories. Since the su(2|3) sector contains some amount of supersymmetry one

can hope to learn how the supersymmetry manifests itself in the open-string picture. The

role of supersymmetry is not obvious at the level of the free Fermion system1.

The dilatation operator, restricted to the set of BPS operators in the su(2|3) sector is

nothing but the sum of five decoupled harmonic oscillator Hamiltonians.

H ′ =
3

∑

i=1

tr
(

Ai†Ai

)

+
3

2

2
∑

I=1

tr
(

ΨI†ΨI

)

. (1.11)

The factor of 3
2 in front of the Fermionic Hamiltonian is nothing but the engineering

dimension of the Fermionic fields of the gauge theory. In what is to follow, we shall

subtract a term proportional to the Fermion number operator and work with

H = H ′ − 1

2

2
∑

I=1

tr
(

ΨI†ΨI

)

. (1.12)

Since the dilatation operator does not change the Fermion number, H and H ′ carry the

same information, and in various analyses that are carried out in this paper, we shall give

explicit prescriptions for understanding various features (such as degeneracies, Yangian

symmetries etc) of H ′ from the studies of the corresponding properties of H. To simplify

the notation we shall write the Hamiltonian as

H =
5

∑

α=1

tr
(

Aα†Aα

)

. (1.13)

It will be understood that α = 1, 2, 3 correspond to Bosonic matrices while α = 4, 5

correspond to Fermionic ones.

Generalization of the closed string point of view from the half BPS sector involving

a single matrix oscillator to the su(2|3) sector follows immediately. The closed string

excitations are identified as states of the matrix model formed out of products of traces of

the creation operator acting on the vacuum, i.e., they are states of the form

∏

n

tr
(

A†α1 · · ·A†αn

)

|0〉 (1.14)

1For a recent parallel line of investigation into the study of multi-charge giants, see [24]
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Of course when all the αi = 1, we revert back to the half BPS sector of chiral primaries.

In this point of view one can work out the degeneracies corresponding to a states with

given energies much along the same lines as the analysis involving a single field Z1. The

analysis is a little more involved but it can be carried out nevertheless using the Polya

formulae for counting the number of distinct ’words’ formed out of a certain number of

’letters’ in an ’alphabet’: in our case five2. However the open string description i.e the

analog of the eigenvalue dynamics of the multi-matrix model is not obvious at all. An open

string description of the full su(2|3) sector would require an understanding of how the free

Fermion picture of the chiral primary states changes in a systematic way once multi-charge

BPS excitations are allowed. Such BPS excitations would correspond to the impurity fields

α = 2 · · · 5 to be present inside a single trace, the simplest of which would correspond to

states such as

tr
(

(A1†)nAα†
)

|0〉 (1.15)

where α is one of the impurity fields 2 · · · 5. As mentioned before, one can in general have

BPS states with a large number of impurity fields inside a single trace. Clearly, the problem

of deriving an open string description of the multi-charge BPS states amounts to finding a

description of the dynamics of the eigenvalues of the matrix X1 in the background of the

impurity fields.

In the present work we shall take a step in the direction of understanding this problem.

We shall be able to show that in the presence of impurity excitations the eigenvalues can

be understood as Fermions with internal/spin degrees of freedom. They will turn out to

interact with each other through spin dependent inverse square interactions. As a matter

of fact we shall be able to formulate the dynamics of the eigenvalues in the background

of a arbitrary number of impurity excitations in terms of generalizations of the celebrated

Calogero systems. Furthermore, we shall also be able to show that for case of the simplest

departure from the Free Fermion picture involving the study of BPS operators consisting

of a single impurity field inside a trace the dynamics reduces to the well known super

symmetric rational Calogero model. We shall study this sector in some detail, as it has all

the features of the most general particle mechanics that one can encounter in the study of

the multi-charge BPS operators. The relation between super-Calogero models and matrix

models was made by Dabholkar [26], where the super Calogero model was shown to be a

consistent truncation of the Marinari-Parisi model. In the case at hand we shall be able

to see that a similar truncation has a natural interpretation in the study of N = 4 SYM

as the restriction of the dynamics of the dilatation operator to protected operators of a

particular type. After setting up the correspondence between multi charge operators and

the super Calogero system we shall recover the complete spectrum and degeneracies of the

BPS excitations of the matrix model within the framework of the Calogero system. This

might be regarded as the realization of an open/closed duality for multi-charge protected

operators much along the same lines as the one between the single matrix oscillator and

the free Fermion system.

2We shall refer the reader to [41] for a simple discussion of Polya counting applied to matrix harmonic

oscillators
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Not all the excitations of the matrix model correspond to protected operators of the

gauge theory. However, the non-BPS excitations of the matrix model are bona-fide local

composite operators of the gauge theory. Other than the sector of protected operators, the

matrix oscillators also provide one with a non-perturbative definition of the gauge theory

dilatation operator in the limit of g2
YM → 0. As is well known, the string dual to the free

gauge theory is notoriously hard to pin down. Thus the ulterior motive behind our study

of the tree level dilatation operator is that perhaps its gauge fixed form can be utilized

to discover the string theory which is relevant in the limit of zero Yang-Mills coupling.

Though we do not make an attempt at finding the string theory, we do identify and study

operators that have the curious property of being protected in the large N limit, while at

finite values of N they turn out to be BMN like operators with small anomalous dimensions.

The parameter that governs their BPS condition is 1
N

. It is in the study of these operators

that we find that the dilatation operator takes on the familiar form of the Calogero model.

Apart from analyzing the spectrum and the open/closed duality, we shall also use the

Calogero system to investigate the hidden symmetries that lead to its integrability. The

motivation for doing this is the use of the protected sector of the gauge theory as a probe to

understand whether or not any of the integrable structures (such as Yangian symmetries)

that are present in the string sigma model survive the supergravity limit. Interestingly

enough, for the case of the Calogero model we shall be able to see that the underlying

symmetry is not an Yangian but rather its loop algebra. In the light of the fact that the

loop algebra can be regarded as a classical limit of the Yangian algebra (the symmetry of

the string sigma model) it is reasonable to expect it to be the symmetry of the classical

limit of the string theory. In the simplest non-trivial example that we study in this paper,

this expectation is indeed realized.

After a detailed description of operators involving a single impurity field inside a matrix

trace in terms of the Calogero model, we shall describe the dynamics of the most general

(multi-charge) protected operators. The particle mechanics in the general case will turn out

to be governed by a particlar (integrable) generalization of the rational Calogero systems

known as the Euler-Calogero systems [27]. We shall be able to exploit the integrability

of these systems to understand the spectrum and degeneracies of the most general multi-

charge BPS operators as well.

We shall finally conclude with comments on some unresolved issues and directions for

future explorations.

2. Multi-matrix harmonic oscillators

In this section we shall present an overview of the techniques that are necessary to have a

gauge fixed description of a collection of matrix harmonic oscillators. The starting point

is a system of d Hermitian matrices, (Xα)ij , α = 1 · · · d. i, j = 1 · · ·N . Keeping in mind

the su(2|3) sector, we shall let d = 5, with d = 1 · · · 3 being bosonic and the rest fermionic.

The Hamiltonian for the matrix model will be taken to be a sum of harmonic oscillators,

H =
∑

α

tr
1

2
(ΠαΠα + XαXα) (2.1)
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Π is the momentum conjugate to X, and the canonical commutation relations are,

[(Xα)ij , (Π
β)kl ]± = i~δα,βδk

j δi
l (2.2)

One could go to the Holomorphic basis of creation and annihilation operators, in which

the Hamiltonian becomes

H =
∑

α

tr
(

A†αAα

)

(2.3)

2.1 Generalized Calogero systems

We want to write the system of Harmonic oscillators in a basis in which one of the matrices,

X1 is diagonal. Changing variables from the matrix elements to the eigenvalues in matrix

models involving several matrices is in general hard to accomplish. However, when only

one matrix is diagonalized this becomes tractable. The matrices do not couple to each

other, so the dynamics of the eigenvalues of a single matrix is that of a spin-Calogero type,

where the role of spin is played by the generators of unitary conjugations [29]. This creates

an effective coupling to the remaining matrices, as the Gauss law relates these generators

to those of the remaining matrices. Such a reduction was worked out by Ferretti in [27] in

the context of the Marinari-Parisi model(see also [28]). Below we outline the procedure for

our case.

Let us denote the diagonal elements of X1 by xi

X1 = U †xU. (2.4)

Furthermore, let us denote the oscillators in this basis by lower case letters

(aα)ij = (UAαU †)ij , (a†α)ij = (UA†αU †)ij, α 6= 1 (2.5)

Let us now proceed to write down the Hamiltonian of the decoupled set of oscillators as a

generalized Calogero system. We are going to treat all the oscillators other than the first

one as impurities so

H = H1 + HImp (2.6)

where H1 denotes the Hamiltonian for the first oscillator. HImp can be written easily

enough as

HImp =
∑

α6=1

tr(a†αaα). (2.7)

To write the first oscillator in the eigenvalue basis one starts with the metric on the space

of Hermitian matrices

ds2 =
∑

i

dxidxi +
∑

i6=j

(xi − xj)
2ω?p

q ωq
p. (2.8)

The one forms ω are defined as

ωi
j = (dU)ik(U †)kj . (2.9)
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Similarly, one also has the dual vector fields L

Li
j = U i

m

∂

∂Um
j

(2.10)

that obey the U(N) Lie algebra

[Li
j,Lk

l ] = δk
j Li

l − δi
lLk

j (2.11)

Using the metric the momentum operator can be written as

∂

∂Xj
i

= (U †)ikπ
k
l Uk

j (2.12)

where

πi
j =

∂

∂xi

δi
j +

1 − δi
j

xi − xj

Li
j (2.13)

We can now write

H1 =
∑

i

1

2

(

− ∂

∂x2
i

+ x2
i

)

+
1

2

∑

i6=j

(

Li
jLj

i

(xi − xj)2

)

(2.14)

This is clearly a generalized U(N) spin-Calogero system. However, we want to formulate

the particle mechanics completely in terms of the microscopic degrees of freedom which

the are N eigenvalues xi and the remaining matrix oscillators aαi
j , a†αi

j , α 6= 1. To do that

we note that U(N) singlet states of the particle mechanical system would generically be of

the kind

Ψi1···in
ji···jn

(x)Πn
k=1(a

†αk)jk

ik
|0〉. (2.15)

Ψ is an U(N) tensor which depends on the N eigenvalues xi. The dependence of the

state on the N(N−1)
2 angular degrees of freedom is contained in (a†α)ij which depend on the

angular coordinates through (2.5). It may now be easily verified that

[Li
j, (a

†α)ab ] =





∑

β

(

(a†β)il(a
β)lj − (a†β)lj(a

β)il

)

, (a†α)ab



 . (2.16)

This identity follows from noticing that

[Li
j, (a

†α)ab ] = δa
j (a†α)ib − δi

b(a
†α)aj (2.17)

which may be compared with the explicit action of the angular derivatives on the angular

coordinates present in the definition of (a†α)ab . We may thus replace the vector fields

appearing in the Hamiltonian by the matrix operators, i.e.

Li
j =

∑

β

(

(a†β)il(a
β)lj − (a†β)lj(a

β)il

)

(2.18)

From now on it will always be implied (unless stated explicitly) that the vector fields have

been replaced by their oscillator realization (2.18). We have thus completed writing the

– 9 –
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Hamiltonian in terms of the degrees of freedom available to us in the basis in which the

first matrix is diagonal. The Hamiltonian being

H =
∑

i

1

2

(

− ∂

∂x2
i

+ x2
i

)

+
1

2

∑

i6=j

(

Li
jLj

i

(xi − xj)2

)

+
∑

α6=1

tr(a†αaα) (2.19)

with

Li
j =

∑

β 6=1

(

(a†β)il(a
β)lj − (a†β)lj(a

β)il

)

(2.20)

2.2 Residual constraints on physical states

A typical state |ψ〉 of the Calogero system is

|ψ〉 = ψii···im
ji···jm

(x)(a†α1)j1i1 · · · (a
†α1)jm

im
|0〉, (2.21)

where ψ is a U(N) tensor. Not all the states of the many-body theory are allowed states

of the gauge fixed matrix model. The states have to be invariant under the residual gauge

symmetry left over even after carrying out the U(N) rotation to the space of eigenvalues

of X1. One must ensure that the diagonal subgroup of U(N) = U(1)N that leaves the

eigenvalues invariant also leave the state invariant. So physical states have to satisfy the

constraint

Li
i|ψ〉 =

∑

β

(

(a†β)il(a
β)li − (a†β)li(a

β)il

)

|ψ〉 = 0 (2.22)

The model described above can be regarded as a generalization of the well known

spin-Calogero models. Unlike the usual Calogero models the model above has a very large

number of ‘spin’ degrees of freedom. The model is still Fermionic, as the overall wave

function is antisymmetric under the exchange of the particles. Thus the Free fermion

picture of BPS operators carrying a single U(1) charge seems to be a replaced by a picture

of interacting Fermions. The Fermions carry an internal spin degree of freedom and interact

through spin dependent inverse square interactions.

The classical limits of such generalized SU(N) Calogero systems have been studied

in the literature in the past for independent reasons and they are referred to as Euler-

Calogero systems. We shall adhere to this terminology in the present work as well. These

systems are also known to be integrable at the classical level [34, 35]. Later in paper,

we shall be able to utilize the connection to matrix oscillators to confirm the quantum

integrability of these models and understand their spectrum.

The SU(N) Calogero model is known to contain various Calogero models with fewer

number of spin degrees of freedom as consistent truncation of its dynamics to suitable

chosen subspaces of its full Hilbert space. For a discussion of such reductions in the context

of trigonometric Calogero models we shall refer to [29, 30, 33]. Thus it is of interest to

study whether or not the usual Calogero models play any special role in the understanding

of BPS operators of the gauge theory. In the following section we shall show that this is

indeed true.
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3. A Dabholkar-like truncation

The first class of operators that we shall look at are the ones that have at the most only a

single impurity excitation located inside a single trace. Moreover, we shall restrict ourselves

to the case where the impurities are Fermionic. These are states of the form

1√
Nm

tr
(

(A†1)m
) 1√

Nn1+1
tr

(

(A†1)n1Ψ†α1

)

· · · 1√
Nni+1

tr
(

(A†1)niΨ†αi

)

|0〉. (3.1)

α1 · · ·αi = 1, 2. An interesting aspect of these states is that they are protected in the large

N limit.

These states when written in the basis in which X1 is diagonal would generically appear

as
∏

m

Ψ(x1 · · · xN )i1···im(A†α1)i1 · · · (A†αm)im |0〉 + O

(

1

N

)

(3.2)

where,

(A†α)i = (ψ†α)ii. (3.3)

are the excitations corresponding to the diagonal matrix elements of the impurity creation

operators in the rotated basis. It is possible to perform a consistent truncation of the

particle mechanical system to a Hilbert space Hd spanned by states of the above type.

To see that this truncation is consistent one needs to show that Hd is closed under the

action of the Hamiltonian. This is obviously the case as the Hamiltonian does not change

the number of impurity fields inside the traces.

As the su(2|3) sector has two Fermionic degrees of freedom, one can consider states

for which the impurities correspond to only one of the two Fermionic degrees of freedom

available to us, that is, either Ψ1 or Ψ2, which we will simply call Ψ. This is the so-called

su(1|1) sector of the gauge theory, and operators formed out of the two degrees of freedom,

X1 and Ψ, are also closed under dilatation. Furthermore, the quartic spin interaction

term of the Euler-Calogero model assumes a much simpler and familiar form within this

truncated subspace, as it can be represented by a graded exchange operator

Li
jLj

i =
1

2
(1 − Πi,j). (3.4)

Πi,j is a graded permutation operator that exchanges the spins at the lattice sites i and j

while picking up a negative sign if both the spins happen to be Fermionic.

To see how this arises, assume that the angular SU(N) conjugation generators L are

in a representation generated by

Li
j = b†ibj − f †

j fi (3.5)

where bi, b
†
i and fi, f

†
i are a set of bosonic and fermionic oscillator ladder operators, respec-

tively. The above construction embeds in the oscillators’ Fock space all totally symmetric

products of the fundamental times all totally antisymmetric products of the antifundamen-

tal of SU(N). The residual physical constraint reads

Li
i|ψ〉 = (b†i bi − f †

i fi)|ψ〉 = 0 (3.6)
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which implies that the Boson and Fermion number for each index i are both equal to 0 or

1. This realizes the group SU(1|1) on each site i, acting upon the ‘spin’ states of the site

labelled by their Fermion number 0, 1. Using the above condition, it is an easy matter to

show that Li
jLj

i reduces to the graded exchange operator 1−Πi,j when it acts on physical

states.

To complete the demonstration, we remark that the representation of Li
j carried by

the states (3.1) is exactly the one embedded in the above construction. Indeed, writing

A†1 = A†, gauge invariant states in terms of b†i and f †
i are generated through the action of

operators

b†i (A
†)nijf

†
j = tr

(

(A†)nf †b†
)

(3.7)

where we view b†i as a row vector and f †
i as a column vector. This is identical to the

operators appearing in (3.1) upon identifying Ψ† with f †b† (both operators are fermionic

and have the same SU(N) transformation properties). In this realization, however, there

are no multiple impurities per trace, since

tr
(

(A†)nf †b†(A†)mf †b†
)

= tr
(

(A†)nf †b†
)

tr
(

(A†)mf †b†
)

(3.8)

So the space spanned by single impurity traces is isomorphic to the above SU(1|1) spin

representation. Further, in the X1 diagonal (eigenvalue) representation, physical states

arise through the action of b†if
†
i for each eigenvalue. We can thus identify (A†)i = (Ψ†)ii

with the above operator, obtaining a correspondence with Dhabolkar-like states (3.2).

By using the formalism developed above, the Hamiltonian in the SU(1|1) sector can

be written as

H =
∑

i

1

2

(

− ∂

∂x2
i

+ x2
i

)

+
1

2

∑

i6=j

(

1 − Πi,j

(xi − xj)2

)

+
∑

j

A†jAj (3.9)

By using the fermionic form of the graded permutation operator,

1

2

(

A†iAi + A†jAj −A†iAj −A†jAi

)

= 1 − Πi,j (3.10)

we can recast the above Hamiltonian as

H =
∑

i

(

−1

2

∂

∂x2
i

+ A†iAi +
1

2
x2

i

)

+
1

2

∑

i6=j

(A†iAi −A†iAj

(xi − xj)2

)

(3.11)

This is nothing but the supersymmetric rational Calogero model. This very model has

appeared in the analysis of superstrings in two dimensions where it was shown by Dabholkar

to be a consistent truncation of the Marinari-Parisi model [26]. The truncation that we

perform is similar to the one carried out by Dabholkar, however, it is to be kept in mind

that the eigenstates of the Calogero system correspond to protected operators of the gauge

theory only in the large N limit. Another gratifying aspect of the present analysis, which

will be made clear in the following sub-section is that one can have a one to one map

between the excitations of the Calogero system and the those of the matrix model. Such
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a map between the open and closed string pictures is slightly obscure in the approach

pioneered in [26].

We thus see that the super-Calogero model is relevant to the study of N=4 SYM

as being the natural generalization of the theory of free Fermions which is relevant for

the study of BPS operators with no impurities. The Calogero model is still a theory of

Fermions as the overall wave function is antisymmetric under the exchange of the particles,

but the Fermions are no longer free and they carry an internal spin degree of freedom.

3.1 From the matrix model to the Calogero system

We shall now elaborate on the connection of the Calogero model to the matrix model, and

in the process provide an alternative explanation for why it was reasonable to replace the

quartic spin interaction term by the quadratic graded permutation operator. The simplest

way to understand the connection to the super Calogero model is by looking at the spectrum

of the matrix model in the subspace considered above. It is quite clear that the spectrum of

the matrix model is the same as that of a system of Bosonic and Fermionic oscillators with

frequencies given by integers. One can introduce Bosonic an Fermionic creation operators

Bn and Fk which create oscillator states of energies n and k respectively. It is then possible

to map the matrix model states to oscillator states using the following identification:

Bn|0〉 ↔
1√
Nn

tr(A†)n|0〉 (3.12)

for Bosonic states and

Fk|0〉 ↔
1√
Nk

[

tr(A†)k−1Ψ†
]

|0〉 (3.13)

for the Fermionic ones. The Bosonic and Fermionic oscillators can be taken to be related

to each other through a supersymmetry algebra given by:

[Fm, Fn]+ = 0, [Bm, Fn] = 0, [Bm, Bn] = 0

[Q,Fm]+ = 0, [Q†, Fn]+ = Bn, [H,Fn] = nFn

[Q,Bn] = 2nFn, [Q†, Bn] = 0, [H,Bn] = nBn (3.14)

H in the above set of equations is the Hamiltonian for the free super oscillators whose

frequencies are given by integers. But this is nothing but the rational super-Calogero

model in disguise. The super-Calogero model and its spectrum has been studied in various

papers in the past, see for example [36, 37], and it is known that it can be brought to a

form where the Hamiltonian becomes a collection of free super oscillators by a similarity

transform. We shall now summarize the similarity transformation that brings the Calogero

model to the form of the super-oscillators for the sake of completeness.

The Calogero model has a manifest supersymmetry which is generated by

Q =
∑

i

A†iΠi

Q† =
∑

i

AiΠ
†
i (3.15)
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where Πi are the coupled momentum operators [25]

Πi = pi − iWi,Π
†
i = pi + iWi. (3.16)

pi = −i ∂
∂xi

while Wi = ∂W
∂xi

with W being the superpotential

W = − ln Πi<j(xi − xj) +
1

2

∑

i

x2
i (3.17)

Some straightforward algebra shows that (up to a constant term) the Hamiltonian can be

written in a manifestly supersymmetric form

H =
1

2
[Q,Q†]+ (3.18)

The ground state has Fermion number = 0, and it is the same as that of the free

Fermion system:

Ω =
∏

i<j

(xi − xj)e
− 1

2

P

i x2

i |0〉 (3.19)

The higher excitations above this ground state can be understood in a purely alge-

braic fashion by mapping the Calogero system to a system of free super-oscillators with

frequencies given by integers 1 · · ·N . The explicit form of the similarity transformation that

maps the super-Calogero system to the system of free super-oscillators has been worked

out in detail in [36], and we shall gather together the relevant results that are necessary

for understanding the degeneracies. One can introduce the Bosonic and Fermionic raising

operatorsBn and Fn

1

2n
Bn =

∑

i

Γ−1xn
i Γ,

1

2n−1
Fn =

∑

i

Γ−1A†
ix

n−1
i Γ, (3.20)

where

Γ = e
S
2 (− ln Ω) (3.21)

and

S =
1

2

∑

i

∂2

∂x2
i

+
∑

i6=j

1

xi − xj

∂

∂xi

−
∑

i6=j

1

(xi − xj)2
(A†

iAi −A†
iAj) (3.22)

Similarly, one could also apply the similarity transformation to the supercharges,

Q = Γ−1QΓ, Q† = Γ−1Q†Γ (3.23)

Some straightforward but lengthy algebraic computations yield that the algebra obeyed by

the raising operators and the supercharges is (3.14). Thus, we see that the truncation of the

matrix model to states involving only one impurity inside a single trace can be described

by the super-Calogero model.
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3.2 Degeneracies

This algebraic structure makes the spectrum and the associated degeneracies of the model

extremely transparent. As in the free Fermion picture the degeneracies of the Bosonic

states are counted by partitions of integers. The states

Bn|0〉and

l
∏

i=l

Bni
|0〉,

∑

i

ni = n (3.24)

are degenerate which is the open string description of the degeneracies between matrix

model states

tr[(A†)n]|0〉and
∏

i

[

tr(A†)ni

]

|0〉,
∑

i

ni = n. (3.25)

Making a choice of ordering such that n1 ≥ n2 ≥ n3 · · · one has the result that the states

with energy n can be represented by Young diagrams with n boxes. For instance the state

with energy n corresponds to a Young diagram with columns of length n1 ≥ n2 ≥ n3 · · ·.

↓
n1

↑
↓
n2

↑
←k→

↓
nk

↑

For the full Calogero system, there are further degeneracies due to the fact that every Bn

excitation is degenerate to a Fn excitation; which is simply a consequence of the manifest

supersymmetry. Thus a state with energy n can, once again be represented by a Young

diagram with n boxes, but each one of the columns (of length ni) now has the option of

corresponding to either a Bni
or a Fni

excitation. We can denote the columns corresponding

to the F excitations by drawing them with boxes with crosses as depicted below. Hence the

complete set of degenerate states for the Calogero model, corresponding to an excitation

of energy n, are described by first forming all the Young diagrams corresponding to the

partitions of n. The action of the supersymmetry generators can then be described by

replacing the columns with the ones containing crossed boxes, one column at a time. For

example, the effect of replacing two columns with crossed ones is depicted below.

↓
n1

↑
↓
n2

↑
←k→

↓
nk

↑
=⇒

↓
n1

↑
↓
n2

↑

X
X

X
X

←k→
↓
nk

↑

X

X
X

One also has to impose the rule that in any given Young diagram one can have at the most

one ’crossed’ column of a given length. This simply follows from the fact

Fni
Fni

= 0 (3.26)

– 15 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
4

To each such partition, one can associate a state of the Calogero model. The naive as-

sociation of states to partitions would be to associate the the appropriate an oscillator

excitation to every column of the Young diagram, i.e., an excitation of the Bn(Fn) type

for each uncrossed (crossed) column of length n. Although the states so formed would be

bona fide eigenstates of the Calogero Hamiltonian, they will not diagonalize the Higher

conserved charges of the Calogero system. This is the analog of the difference between the

string basis and the basis formed my taking the Slater determinants of the various Hermite

polynomials for the free Fermion system [8]. However, the eigenstates that diagonialize all

the mutually commuting charges of the Calogero system were identified in [38] and their

relation to the partitions described above was also made clear in the same paper. Since,

we shall not be involved in the diagonalization of the higher charges in the present work,

we shall refer to [38] for further details of the construction of eigenfunctions.

Having enumerated the degeneracies of the Calogero model we can now proceed to

apply these results to the dilatation operator H ′. The dilatation operator differs from the

Calogero system by a term proportional to the Fermion number operator. However the

above discussion can be easily generalized to understand its degeneracies as well. In the

matrix model language, the Hamiltonian is

H ′ = tr

(

A†A +
3

2
Ψ†Ψ

)

, (3.27)

and the factor of three halves in front of the Fermion number operator is due to the fact that

the dilatation operator measures the conformal dimensions of the gauge theory composite

operators and the Fermions have a bare conformal dimension of 3
2 while that for the scalars

os 1. In the basis, where the position space matrix corresponding to A is diagonal, the

dilatation operator H + 1
2A†iAi is:

H ′ =
∑

i

(

−1

2

∂

∂x2
i

+
3

2
A†iAi +

1

2
x2

i

)

+
1

2

∑

i6=j

(A†iAi −A†iAj

(xi − xj)2

)

. (3.28)

The previous discussion about states being labeled by F and B type oscillators goes through

but the degeneracies are to be counted in a somewhat different manner. From the Hamilto-

nian, it is clear that three Bosonic excitations have the same energy as two Fermionic ones,

thus Bn and Fn no longer represent degenerate excitations. However Bn and Fn1
Fn−n1−1

do, for every value of n1. Thus, as before, the degeneracies can be counted using Young

diagrams. For a given excitation of energy n one again forms all the Young diagrams corre-

sponding to the partitions of n. These are simply all the zero Fermion number excitations.

One can then replace each column of the Young diagram (say of length m) with two crossed

columns of lengths m1 and m2 satisfying

m1 + m2 = m − 1. (3.29)

The new columns have to be added in a way such that the new diagram is still a legal Young

diagram. Each such replacement is equivalent to replacing three Bosonic excitations with

two Fermionic ones. Carrying this process out for all the columns of the diagrams generates
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for us all the F type excitations that are degenerate to a state of a given energy. In the

process of generating Fermionic excitations, one also needs to exercise the constraint that

there cannot be two crossed columns of the same length in a given Young diagram.

The effect of replacing Bosonic excitations by Fermionic ones of length 1 on a particular

young diagram is illustrated in the following diagram.

=⇒ XX

In the usual analysis of Calogero systems with a finite number (N) of particles, one imposes

a non-perturbative cutoff on the depth of the columns of the Young diagrams. Namely,

the columns are not allowed to have more than N boxes. However, that would correspond

to the finite N matrix model, for which the states that we picked are no longer protected.

The large N limit, translates, in the language of the Young diagrams to lifting the non-

perturbative cutoff on the depth of the columns. Looked at in another way, imposing the

BPS condition at the level of the Calogero system is equivalent to lifting the cutoff on the

depth of the columns.

4. Remnants of Yangian symmetries and loop algebras

In this section, we shall focus on the realization of Yangian symmetries and non-local

conservation laws in the super-Calogero system.

The Calogero model is nothing but the gauge fixed form of the dilatation operator

in a particular sector of BPS operators. If one goes beyond the BPS sectors, one would

of course have to incorporate the perturbative corrections to the dilatation generator. At

finite values of N this is hard to accomplish, however from the detailed studies of operator

mixing in the gauge theory in the recent past, the first few perturbative corrections to the

large N limit of the dilatation operator are known in rather explicit forms, at least in some

small sectors of operator mixing. For example, in the su(2|3) sector discussed earlier, the

planar dilatation operator is known up to the third order in the ’t Hooft coupling [11]. It has

also been shown that the dilatation operator can be realized as an integrable quantum spin

chain up to this order in perturbation theory [11, 42]. One point of view on the integrability

of the spin chain relates the integrability to the existence of Hopf algebraic symmetries:

the integrability being simply the manifestation of such large hidden symmetries. For

more detailed studies of the Yangian for the gauge theory we shall refer to [44, 45, 43].

The existence of Yangian symmetries, apart from providing key insights into the algebraic

structures that are responsible for the integrability of the spin chain, are also crucial from

the point of view of the AdS/CFT correspondence as the string sigma model has been

known to possess this very same symmetry at the classical level [47, 48, 46, 50, 49]. To the

extent that the spectrum of anomalous dimensions of the gauge theory and those closed

string excitations agree (for instance in the BMN limit) it has been possible to relate the

Yangian symmetries on the gauge theory and the gravity sides. For the specific case of
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studies of integrable structures in the the su(1|1) sector of the AdS/CFT correspondence

we shall refer to [45, 51, 52]

However, it is not clear at the moment whether or not these novel symmetries survive

the low energy supergravity limit. One can however use the gauge theory as a probe to

investigate this problem. Since results from the BPS sectors of the gauge theory can be ex-

trapolated to the supergravity limit one can investigate the role of the Yangian symmetries

of the dilatation operator when it is restricted to the BPS states and try and understand

how these symmetries manifest themselves in the supergravity limit. With this motivation

in mind we can probe the structure of Yangian symmetries of the super Calogero model

studied so far.

The Yangian charges and the conserved integrals of motion of the Calogero model

are generated by the matrix elements of the transfer matrix, which is a 2 × 2 matrix for

the su(1|1) model, each matrix element of which is an operator in the Hilbert space of

the Calogero model [53].3 The transfer matrix has a free parameter, namely the spectral

parameter u and the standard expansion around an infinite vale of the spectral parameter

reads as

T ab = Iδab +

∞
∑

n=1

1

un
T ab

n−1. (4.1)

In the above expression Sab(j) are the su(1|1) generators at the j th lattice site,

S11(j) = AjA†
j, S

22(j) = A†
jAj

S12(j) = Aj, S
21(j) = A†

j . (4.2)

T ab
n =

∑

j,k

Sab(j)(Ln)j,k, (4.3)

where Ln is the n th power of the N × N Lax matrix

Lj,k = δj,k

(

∂

∂xj
+ xj

)

+ ~(1 − δj,k)ωj,kΠj,k (4.4)

and

ωj,k =
e−

~

2
(xi−xj)

sinh ~

2 (xi − xj)
(4.5)

We have chosen to incorporate a free parameter, which we suggestively denote by ~ in the

above analysis to illustrate the contraction of the Yangian algebra to the loop algebra in

a transparent way. We have also chosen an inverse hyperbolic fall off of the inter-particle

potential in the Lax operator rather than the 1/(xi − xj) fall off for the same purpose.

The basic idea being to start with the hyperbolic case, which contains the rational and

the trigonometric Calogero models as special cases and recover the underlying symmetry

of the rational case as a particular limit.

3There is a large literature on the role of Yangian symmetries and quantum spin chains. Of particular

relevance to the present problem are [54 – 58].
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The transfer matrix satisfies the quadratic Yang-Baxter algebra.

[T ab
s , T cd

p+1]± − [T ab
p+1, T

cd
s ]± = ~(−1)ε(c)ε(a)+ε(c)ε(b)+ε(b)ε(a)

(

T cb
p T ad

s − T cb
s T ad

p

)

. (4.6)

In the above equation ε denotes the grade ε(1) = 0, ε(1) = 1. It is important to note that the

non-linearity of the Yang-Baxter algebra (the r.h.s of the above equation) is proportional

to ~. The Yang-Baxter algebra also implies
∑

i,j

[T ii
m, T jj

n ] = 0 (4.7)

i.e the trace of the transfer matrix is the generating function for the conserved charges

which are in involution. As a matter of fact, if one denoted these charges by Hn = trT n,

then one can show that the Hamiltonian, up to the addition of constant terms is nothing

but T 2, which for the Hyperbolic case takes on the following form.

H =
1

2

∑

j,k

(−∂2
j + x2

j + A†(j)A(j) + ~Πj,k∂jωj,k + ~
2ωj,kωk,j) (4.8)

For the limit of interest to us, ~ → 0 we recover

ωj,k =
1

xj − xk

(4.9)

with the Hamiltonian above becoming the super-Calogero Hamiltonian:

H →
∑

i

(

−1

2

∂

∂x2
i

+ 2A†iAi +
1

2
x2

i

)

+
1

2

∑

i6=j

(

1 − Πi,j

(xi − xj)2

)

. (4.10)

As is obvious from the above construction, in this ’clasical’ limit, the Yangian algebra

degenerates into the loop algebra:

[T ab
s , T cd

p+1]± − [T ab
p+1, T

cd
s ]± = 0, (4.11)

which can be written, upon using the above relations recursively as:

[T ab
s , T cd

p ]± = δb,cT
ad
p+s − (−1)(ε(a)+ε(b))(ε(c)+ε(d)δa,dT

cb
p+s (4.12)

Hence, the integrable structure in the dynamics of the su(1|1) BPS operators appears to

arise from the loop algebra of su(1|1). One might have anticipated this from the fact

that the dynamics of the BPS sectors of the gauge theory can be extrapolated to the

supergravity regime and the supergravity can be regarded as a classical limit of the string

theory. On the other hand the loop algebra is also a classical limit of the Yangian algebra,

which appears to be a symmetry of the dual string theory. The discussion above indicates,

through an explicit construction, that these two notions of classical limits are compatible

with each other.

Furthermore, we can also see that the supersymmetry generators are contained in the

loop algebra. As a matter of fact it is easy to see that:

T 21
1 = Q,T 12

1 = Q† (4.13)
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and that:

H = [T 21
1 , T 12

1 ]+ (4.14)

The higher (odd) elements of the loop algebra simply act as the supersymmetry gen-

erators for the higher conserved charges of the system:

Hn+m = [T 12
n , T 21

m ]+ (4.15)

We thus see that the loop algebra and the supersymmetry of the particle mechanics fit

together in a natural way.

The Calogero model Hamiltonian is, of course, not the dilatation operator, as the two

differ by a term proportional to the fermion number operator

H ′ = H +
1

2
A†

iAi (4.16)

However, just as we were able to recover the degeneracies of the dilatation operator from

those of the Calogero model, it is possible to use the transfer matrix of the Calogero system

to construct the integrals of motion for the dilatation operator. The construction is ex-

tremely simple. The Fermion number operator does not commute with the supersymmetry

generators, and in general, with the odd elements of the Yangian algebra T 12
n and T 21

m .

However, it does commute with the generators of even grade. Thus we have

[H ′, T ii
n ] = 0 ∀i (4.17)

Moreover, from the loop algebra it is clear that

[T 11
m , T 11

n ] = [T 11
m , T 22

n ] = [T 22
m , T 22

n ] = 0 ∀m,n (4.18)

Thus we have as many conserved charges in involution for the dilatation operator as there

are degrees of freedom; namely 2N . Thus we recover the integrability of the dilatation

operator from the underlying loop algebraic symmetry of the super Calogero model.

5. Spectrum of the Euler-Calogero system

We shall now revert back to the general su(2|3) Hamiltonian given in (2.20). Integrability

of the particle mechanics model presented above derives from the fact that it is nothing

but a sum of decoupled (matrix) oscillators in disguise. Such matrix models are obviously

integrable, indeed even for finite values of N , and they continue to be integrable in the

large N limit. Apart from the explicit solutions to the equations of motion of these matrix

models, integrability also manifests in the existence of a large number (infinite in the large

N limit) of conserved quantities. It is worthwhile to understand the integrability of the

many-body system in some detail. To do that let us begin by writing the Hamiltonian in

the special basis in which X1 is diagonal:

H =
∑

α

(a†αaα). (5.1)
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It is understood that

(a1)
i
j =

(

xi +
∂

∂xi

)

δi
j +

(1 − δi
j)Li

j

xi − xj

(a†1)ij =

(

xi −
∂

∂xi

)

δi
j +

(1 − δi
j)Li

j

xi − xj
(5.2)

and the other oscillators a†α, aα (α 6= 1) are simply the remaining degrees of freedom for

the gauged fixed matrix model i.e they are the U(N) rotated oscillators. Translating the

original matrix model equations of motion to this special basis one can see that

ȧ†α = a†α + [a†α, g]

ȧα = −aα + [aα, g] (5.3)

where the commutator on the r.h.s is the matrix commutator and

gi
j =

(1 − δi
j)Li

j

xi − xj
(5.4)

It is now a straightforward exercise to show that operators

(O)α1···αm

β1···βn
= tr

(

a†α1 · · · a†αmaβ1
· · · aβn

)

(5.5)

evolve according to

Ȯα1···αm

β1···βn
= (m − n)(O)α1···αm

β1···βn
(5.6)

This obviously implies that (O)α1···αn

β1···βn
are all integrals of motion for every n and that the

states

|{αi1 · · ·αim}〉 = tra†α1 · · · a†αm |0〉 (5.7)

are exact eigenstates of H with energy m. Thus, quite like the super-Calogero model the

degeneracies can once again be counted by the use of Young diagrams. In the zero Fermion

number sector, Li
j = 0, and hence, all the states with a given energy n can be labeled by

Young diagrams corresponding to the partitions of n. But unlike the Calogero model, one

now has four types of impurities, two Bosonic and two Fermionic. Just as we introduced

diagrams with crossed columns in the Calogero case, here we have to distinguish between

the various impurities, and hence it is useful to think of the columns being colored by four

colors corresponding to the impurities. Thus the additional degeneracies are generated

by replacing the columns of the Young diagrams of the zero impurity number sector with

colored columns one at a time. We also have to keep in mind that when we add columns

corresponding to the Bosonic impurities, we trade a column of the original free Fermion

Young diagram for a colored column of the same length. However, as in the case of the

su(1|1) sector, when it comes to inserting Fermionic impurities, one has to replace the

columns of the free Fermion Young diagram (say of size n) with two columns, one of

lengths n1 and n2 satisfying

n1 + n2 = n − 1. (5.8)
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Furthermore, we need to make sure that the there is at the most one Fermionic column of

a given color and length.

This construction counts all the degeneracies between states that have at the most one

impurity inside a single trace in the original matrix model picture. These are half BPS

states, although not all states of the matrix model are. The degeneracies between states of

zero impurity number and impurity number greater than one are not accounted for by the

above construction. For example, the above construction does not count the degeneracy

between the states

tr(a1†)m+n+2|0〉 and tr
(

(a1†)ma2†(a1†)na2†
)

|0〉. (5.9)

The second state above is non-BPS. Thus, we have been able to utilize the integrability of

the Euler-Calogero model to enumerate all the BPS states, that are charged under su(2|3),
formed out of inserting a single impurity field inside a matrix trace.

A natural question that arises is how one may describe BPS excitations involving

several impurity fields within the open string picture. The answer to that is not hard to

see. One needs to write the supercharges for the full su(2|3) sector in the basis in the which

X1 is diagonal. Since the BPS states are all generated by the action of the supersymmetry

generators, all one needs to do is write the super charges in this basis and generate all the

BPS states by their repeated action. The supercharge of interest to us is the one that

replaces a scalar impurity field by a Fermionic one and it can be written as 2 × 3 matrix,

with matrix elements

QI
i = tr(Ψ†Iai) (5.10)

which in the basis of interest takes the form

Qα
β = tr(a†αaβ), α = 4, 5, β = 1, 2, 3. (5.11)

Needless to say, in this second form it is implied that the oscillators are the ones in the

U(N) rotated basis (5.2).

The construction described previously enumerates all the BPS states formed out of

single action of the supercharge. The rest can be similarly generated by repeating the

action of the supersymmetry generator given above. This will pick out all the BPS states

contained in the complete set of states of the Euler-Calogero model.

6. Discussion and future directions

The general connection between the dilatation operator and Calogero systems can lead to

several interesting avenues of investigation that were not addressed in the present work.

We list some of these possibilities below.

1. From the point of view of integrable systems, it would be extremely interesting to

study the integrability of the Euler-Calogero system in greater detail. In the present

work, we presented enough of an understanding of its integrability to understand its

spectrum and the associated degeneracies. Gaining an understanding of the under-

lying Yang-Baxter algebra for the quantum Euler-Calogero system would clarify the
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role of Yangian type symmetries for this system. Such an analysis should be possible,

as the classical r matrix for the Euler-Calogero system, which curiously enough is

a dynamical ‘r’ matrix has been found in [59]. Of particular interest would be the

a systematic understanding of the dynamical models and integrable structures that

arise when one considers BPS operators that involve more than a single impurity

field inside a trace.

2. In the paper we showed that the rational super-Calogero model can be regarded as

the simplest non-trivial generalization of the theory of free Fermions when it comes

to understanding protected operators of the gauge theory. Just like the theory of free

Fermions, it was shown that one can have two equivalent description of the states

of this theory, which we regarded as an open/closed duality. Clearly it would be

extremely desirable to have a world sheet interpretation of the super-Calogero system,

along the lines of the description provided in [12] for the free Fermion system. It is

not hard to envisage what the world sheet string theory would be. The string dual

of the free Fermion system was found by taking valuable clues from string theory

in two dimensions and analytically continuing the string dual of the C = 1 matrix

model to the case of the ‘right-side-up’ harmonic oscillator. To take a similar clue

for the string dual of the Calogero model, we shall have to look at the world-sheet

description of strings in AdS2. This particular string theory was analyzed recently

in [32] and a connection to Calogero systems was also made in the same paper. It

seems plausible that this very theory is the string dual of the su(1|1) BPS sector of

N =4 SYM discussed earlier in this paper. We hope to report on this possibility in

the near future.

3. Clearly, the tree level dilatation operator can be written as an Euler-Claogero system

even if the states in question do not correspond to BPS operators of the gauge theory.

Hence the Euler-Calogero system provides us with a starting point for understanding

non-BPS excitations. It would indeed be extremely interesting to understand how this

framework of the Euler-Calogero model changes once the higher loop corrections to

the dilatation operator are considered. Recently it has been shown that it is possible

to obtain the all-loop BMN formula by doing a one loop computation around a

carefully chosen vacuum of the dilatation operator [22, 23]. This point of view can be

easily incorporated within the formalism developed in the present paper. We hope to

report on the connection of Euler-Calogero type of dynamical systems and non-BPS

corrections to the supergravity spectrum in the near future as well.
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